Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Dimeric copper(II) 3,3-dimethylbutyrate adducts with ethanol, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine and 3,3-dimethylbutyric acid

Masato Goto, ${ }^{\text {a }}$ Yoshiyuki Kani, ${ }^{a}$ Masanobu Tsuchimoto, ${ }^{\text {a }}$ Shigeru Ohba, ${ }^{\text {a }}$ Hideaki Matsushima ${ }^{\text {b }}$ and Tadashi Tokii ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
Correspondence e-mail: ohba@chem.keio.ac.jp

Received 8 June 1999
Accepted 22 September 1999
In the crystals of the five title compounds, tetrakis(μ-3,3-dimethylbutyrato- $O: O^{\prime}$)bis(ethanol- O)dicopper(II)ethanol (1/2), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, (I), tetrakis $\left(\mu\right.$-3,3-dimethylbutyrato- $\left.O: O^{\prime}\right)$ bis(2-methylpyridine$N)$ dicopper (II), $\quad\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (II), tetrakis(μ-3,3-dimethylbutyrato- $O: O^{\prime}$)bis(3-methylpyridine- N)dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (III), tetrakis(μ-3,3-dimethylbutyrato- $O: O^{\prime}$)bis(4-methylpyridine- N)dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (IV), and tetrakis(μ-3,3-dimethylbutyrato- $O: O^{\prime}$) bis (3,3-dimethylbutyric acidO)dicopper(II), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)_{2}\right]$, (V), the dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separations are: (I) 2.602 (3) \AA, (II) 2.666 (3) \AA, (III) 2.640 (2) \AA, (IV) 2.638 (4) A and (V) 2.599 (1) \AA.

Comment

The structures and magnetic properties of dimeric copper(II) carboxylates have been investigated revealing that the electronic structure of the OCO bridge reflects the strength of the antiferromagnetic interaction (Yamanaka et al., 1991; Harada et al., 1997). The organosilane group directly bonded to the OCO bridge greatly enhances the antiferromagnetic interaction due to the σ-electron donation character. For example, the complex $\left[\mathrm{Cu}_{2}\left(\mathrm{PhMe}_{2} \mathrm{SiCOO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ has a $-2 J$ value of $1000 \pm 150 \mathrm{~cm}^{-1}$ (Steward et al., 1986). Recently, the $-2 J$ values of the trimethylsilylacetate copper(II) complexes $\left[\mathrm{Cu}_{2}\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{COO}\right)_{4} L_{2}\right](L=$ pyridine, 2-methylpyridine, 3methylpyridine and quinoline) were determined to be $328 \mathrm{~cm}^{-1}$ on average (Nakagawa et al., 2000). In this paper, the corresponding carbon carboxylate copper(II) complexes
$\left[\mathrm{Cu}_{2}\left(\mathrm{Me}_{3} \mathrm{CCH}_{2} \mathrm{COO}\right)_{4} L_{2}\right]$ [$L=$ 2-methylpyridine, (II), 3methylpyridine, (III), and 4-methylpyridine, (IV)] were examined. The magnetic $-2 J$ value of the pyridine adduct, $\left[\mathrm{Cu}_{2}\left(\mathrm{Me}_{3} \mathrm{CCH}_{2} \mathrm{COO}\right)_{4}(\text { py })_{2}\right]$, was determined to be $348 \mathrm{~cm}^{-1}$, and those of 2-, 3-, and 4-methylpyridine adducts were determined to be 363,355 and $354 \mathrm{~cm}^{-1}\left(H=-2 J S_{1} \cdot S_{2}\right)$, respectively. This indicates that the Si atom bonded to the α carbon of the carboxylato bridge slightly reduces the antiferromagnetic interaction.

(I) $R=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, diethanol solvate
(II) $R=o-\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
(III) $R=m-\mathrm{Mc}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
(IV) $R=\left[-\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.$
(V) $R=\mathrm{MeC}(\mathrm{Me})_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{O}$-coordinated

The $-2 J$ value of the non-adduct, $\left[\mathrm{Cu}_{2}\left(\mathrm{Me}_{3} \mathrm{CCH}_{2} \mathrm{COO}\right)_{4}\right]$, obtained from (V) by removing the axial acid ligands in a vacuum is $364 \mathrm{~cm}^{-1}$, which is almost in the range 348 $363 \mathrm{~cm}^{-1}$ for the pyridine and methylpyridine adducts. This suggests that the non-adduct created from (V) has a discrete

Figure 1
The molecular structure of (I). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2
The molecular structure of (II). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 3
The molecular structure of (III). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
dimer structure, with the apical position free from coordination.

The binuclear copper complexes (I)-(V) have a centre of symmetry, and the geometry around the Cu atoms is a typical square-pyramidal coordination. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are 2.602 (3) in (I) and 2.599 (1) \AA in (V) for O-donor axial ligands, and 2.638 (4)-2.666 (3) \AA in (II)-(IV) for N-donor axial ligands. This is the result of a larger deviation of the Cu atom from the O_{4} basal plane to the N atom than that to the O

(a)

(b)

Figure 4
The molecular structure of (IV); (a) and (b) show the two independent molecules. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
atom at the apical position. In (V), the $\mathrm{Cu} 1-\mathrm{O} 2$ bond length of 2.005 (4) \AA is $0.05 \AA$ longer than those of the other $\mathrm{Cu}-\mathrm{O}$ bonds in the cage due to the intramolecular $\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$ hydrogen bond.

Experimental

3,3-Dimethylbutyric acid $(116 \mathrm{mg}, \quad 1.0 \mathrm{mmol})$ and CuCO_{3}.$\mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(60 \mathrm{mg}, 0.25 \mathrm{mmol})$ were suspended in a mixture of water and methanol (3:1, 20 ml). After the solution was stirred for 1 h at room temperature, a green precipitate was collected and dissolved in ethanol. From the solution, green crystals of (I) were grown by

Figure 5
The molecular structure of (V). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
slow evaporation. When 2-, 3-, or 4-methylpyridine $(46.5 \mathrm{mg}$, 0.50 mmol) was added to the solution, the colour changed from green to blue, and green crystals of (II), (III) or (IV) were obtained.

Crystals of the pyridine adduct were prepared in a similar way: $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, monoclinic, $P 2_{1} / c, a=9.956$ (2), $b=$ 18.445 (2), $c=21.703$ (2) $\AA, \beta=98.11$ (1) ${ }^{\circ}, V=3946$ (1) $\AA^{3}, Z=4$, $\mathrm{Cu} \cdots \mathrm{Cu}=2.634(3) \AA,-2 J=348 \mathrm{~cm}^{-1}$. Crystals of the acid adduct, (V), were grown from an acetonitrile solution of (I) with the addition of 3,3-dimethylbutyric acid ($58 \mathrm{mg}, 0.50 \mathrm{mmol}$). The crystal specimen of (I) was sealed in a capillary with mother liquor, and that of (II) was coated with adhesive to avoid efflorescence.

Compound (I)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \quad Z=1$
$M_{r}=771.98$
Triclinic, $P \overline{1}$
$a=10.765$ (2) A
$b=10.923$ (2) \AA
$c=9.820(1) \AA$
$\alpha=105.43(1)^{\circ}$
$\beta=106.50(1)^{\circ}$
$\gamma=88.43(1)^{\circ}$
$V=1065.8(3) \AA^{3}$

Data collection

Rigaku AFC-5 diffractometer

$\theta-2 \theta$ scans

Absorption correction: by integration (Coppens et al., 1965) $T_{\text {min }}=0.569, T_{\max }=0.822$
5151 measured reflections
4888 independent reflections
3646 reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$

Refinement

Refinement on F
$R=0.076$
$w R=0.077$
$S=1.44$
3646 reflections
182 parameters
$D_{x}=1.203 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=1.047 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Prism, green
$0.5 \times 0.4 \times 0.3 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.012 \\
& \theta_{\max }=27.5^{\circ} \\
& h=0 \rightarrow 14 \\
& k=-14 \rightarrow 14 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

H-atom parameters constrained $w=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.03$
$\Delta \rho_{\max }=1.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\max }=1.23 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.91 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.602(3)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$2.164(3)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.971(3)$	$\mathrm{O} 2-\mathrm{C} 9$	$1.250(4)$
$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.968(3)$	$\mathrm{O} 3-\mathrm{C} 9$	$1.268(5)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.952(3)$	$\mathrm{O} 4-\mathrm{C} 15$	$1.243(5)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.958(3)$	$\mathrm{O} 5-\mathrm{C} 15$	$1.250(5)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$168.9(1)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 3$	$123.9(4)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$168.8(2)$	$\mathrm{O} 4-\mathrm{C} 15-\mathrm{O} 5$	$126.2(4)$

Symmetry code: (i) $-x,-y,-z$.

Compound (II)

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$D_{x}=1.260 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=773.96$
Monoclinic, $P 2_{\mathrm{d}} / a$
Mo $K \alpha$ radiation
$a=10.040$ (2) A
Cell parameters from 25
$b=18.468$ (1) \AA reflections
$b=18.468(1) \therefore \quad \theta=10-15^{\circ}$
$c=11.649$ (1) A
$\mu=1.089 \mathrm{~mm}^{-1}$
$\beta=109.16(1)^{\circ}$
$T=299 \mathrm{~K}$
$V=2040.3(4) \AA^{3}$
Prism, green
$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Rigaku AFC-5 diffractometer	$R_{\text {int }}=0.014$
$\theta-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: by integra-	$h=0 \rightarrow 13$
tion (Coppens et al., 1965)	$k=0 \rightarrow 24$
$T_{\min }=0.794, T_{\max }=0.830$	$l=-15 \rightarrow 15$
5080 measured reflections	3 standard reflections
4678 independent reflections	every 100 reflections
3226 reflections with $\left\|F_{o}\right\|>3 \sigma\left(\left\|F_{o}\right\|\right)$	intensity decay: none

Refinement

Refinement on F
H -atom parameters constrained
$R=0.050$
$w R=0.044$
$w=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$
$S=1.24$
$(\Delta / \sigma)_{\text {max }}=0.03$
3226 reflections
217 parameters

Table 2

Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.666(3)$	$\mathrm{Cu} 1-\mathrm{N} 6$	$2.238(3)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.969(2)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.251(4)$
$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.982(2)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.249(4)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.969(2)$	$\mathrm{O} 4-\mathrm{C} 13$	$1.258(4)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.967(2)$	$\mathrm{O} 5-\mathrm{C} 13$	$1.254(4)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$167.2(1)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3$	$125.7(3)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$167.3(1)$	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{O} 5$	$125.2(3)$

Symmetry code: (i) $1-x,-y, 1-z$.

Compound (III)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$	$Z=1$
$M_{r}=773.96$	$D_{x}=1.228 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.603(2) \AA$	Cell parameters from 25
$b=11.216(2) \AA$	\quad reflections
$c=10.289(1) \AA$	$\theta=10-15^{\circ}$
$\alpha=105.80(1)^{\circ}$	$\mu=1.061 \mathrm{~mm}^{-1}$
$\beta=101.01(1)^{\circ}$	$T=299 \mathrm{~K}$
$\gamma=63.11(1)^{\circ}$	Prism, green
$V=1046.7(3) \AA^{\circ}$	$0.6 \times 0.4 \times 0.4 \mathrm{~mm}$

Data collection

Rigaku AFC- 5 diffractometer	$R_{\text {int }}=0.011$
$\theta-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: by integra-	$h=0 \rightarrow 14$
tion (Coppens et al., 1965)	$k=-15 \rightarrow 15$
$T_{\min }=0.965, T_{\max }=0.973$	$l=-13 \rightarrow 13$
5071 measured reflections	3 standard reflections
4810 independent reflections	every 100 reflections
4058 reflections with $\left\|F_{o}\right\|>3 \sigma\left(\left\|F_{o}\right\|\right)$	intensity decay: none

Refinement

Refinement on F
H -atom parameters constrained
$w=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.03$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.72 \mathrm{e}^{-3}$
$w R=0.048$

Table 4
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.638(4)$	$\mathrm{Cu} 2-\mathrm{O} 10^{\mathrm{ii}}$	$1.960(4)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.967(3)$	$\mathrm{Cu} 2-\mathrm{N} 12$	$2.167(4)$
$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.966(3)$	$\mathrm{O} 3-\mathrm{C} 13$	$1.258(6)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.960(4)$	$\mathrm{O} 4-\mathrm{C} 13$	$1.266(6)$
$\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$	$1.961(4)$	$\mathrm{O} 5-\mathrm{C} 19$	$1.272(6)$
$\mathrm{Cu} 1-\mathrm{N} 11$	$2.175(4)$	$\mathrm{O} 6-\mathrm{C} 19$	$1.240(6)$
$\mathrm{Cu} 2-\mathrm{Cu} 2^{\mathrm{ii}}$	$2.641(4)$	$\mathrm{O} 7-\mathrm{C} 31$	$1.228(7)$
$\mathrm{Cu} 2-\mathrm{O} 7$	$1.967(3)$	$\mathrm{O} 8-\mathrm{C} 31$	$1.278(6)$
$\mathrm{Cu} 2-\mathrm{O} 8^{\mathrm{ii}}$	$1.985(4)$	$\mathrm{O} 9-\mathrm{C} 37$	$1.259(7)$
$\mathrm{Cu} 2-\mathrm{O} 9$	$1.974(4)$	$\mathrm{O} 10-\mathrm{C} 37$	$1.249(7)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$		$168.1(2)$	$\mathrm{O} 3-\mathrm{C} 13-\mathrm{O} 4$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6^{\mathrm{i}}$	$168.0(2)$	$\mathrm{O} 5-\mathrm{C} 19-\mathrm{O} 6$	$124.7(5)$
$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 8^{\mathrm{ii}}$	$168.1(2)$	$\mathrm{O} 7-\mathrm{C} 31-\mathrm{O} 8$	$124.9(5)$
$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 10^{\mathrm{ii}}$	$168.0(2)$	$\mathrm{O} 9-\mathrm{C} 37-\mathrm{O} 10$	$125.7(5)$

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $-x, 1-y,-z$.

Table 3
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.640(2)$	$\mathrm{Cu} 1-\mathrm{N} 6$	$2.163(2)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.975(2)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.260(2)$
$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.968(2)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.257(2)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.976(2)$	$\mathrm{O} 4-\mathrm{C} 13$	$1.245(2)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.973(2)$	$\mathrm{O} 5-\mathrm{C} 13$	$1.251(2)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$168.1(1)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3$	$125.6(2)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$167.7(1)$	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{O} 5$	$125.3(2)$

Symmetry code: (i) $-x, 1-y, 2-z$.

Compound (IV)

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=773.96$
Triclinic, $P \overline{1}$
$a=11.346(2) \AA$
$b=18.584(3) \AA$
$c=10.606(2) \AA$
$\alpha=90.44(1)^{\circ}$
$\beta=101.40(1)^{\circ}$
$\gamma=74.80(1)^{\circ}$
$V=2113.2(6) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.216 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=773.96$
Triclinic, $P \overline{1}$
$a=11.346$ (2) A
$c=10.606(2) A$
$\alpha=90.44$ (1)
$\gamma=74.80$ (1)
$V=2113.2(6) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=1.051 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Prism, green
$0.5 \times 0.4 \times 0.2 \mathrm{~mm}$

Data collection

Rigaku AFC-5 diffractometer	$R_{\text {int }}=0.017$
$\theta-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: by integra-	$h=0 \rightarrow 15$
tion (Coppens et al. 1965)	$k=-24 \rightarrow 24$
$T_{\min }=0.967, T_{\max }=0.984$	$l=-14 \rightarrow 14$
10177 measured reflections	3 standard reflections
9683 independent reflections	every 100 reflections
5211 reflections with $\left\|F_{o}\right\|>3 \sigma\left(\left\|F_{o}\right\|\right)$	intensity decay: none

Refinement

Refinement on F
$R=0.067$
$w R=0.052$
H-atom parameters constrained
$w=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.03$
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.66 \mathrm{e}^{\AA^{-3}}$

Compound (V)

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)_{2}\right] \quad D_{x}=1.201 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=820.02$
Monoclinic, $P 2_{\mathrm{f}} / c$
$a=10.890$ (2) А
$b=18.211$ (2) \AA
$c=11.787$ (1) A
$\beta=103.98$ (1) ${ }^{\circ}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=0.988 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$V=2268.2(5) \AA^{3}$
Prism, green
$Z=2$
$0.3 \times 0.3 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC-5 diffractometer	$R_{\text {int }}=0.016$
$\theta-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: by integra-	$h=0 \rightarrow 14$
\quad tion (Coppens et al., 1965)	$k=0 \rightarrow 23$
$\quad T_{\min }=0.792, T_{\max }=0.793$	$l=-15 \rightarrow 15$
5475 measured reflections	3 standard reflections
5214 independent reflections	every 100 reflections
2610 reflections with $\left\|F_{o}\right\|>3 \sigma\left(\left\|F_{o}\right\|\right)$	intensity decay: none

Refinement

Refinement on $F \quad$ H-atom parameters constrained
$R=0.070$
$w R=0.054$
$S=1.33$
2610 reflections
226 parameters
$w=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.008$
$\Delta \rho_{\max }=0.93 \mathrm{e}^{\AA^{-3}}$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 14$
$l=-15 \rightarrow 15$
3 standard reflections very 100 reflections intensity decay: none
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e}^{\AA^{-3}}$

Table 5
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.599(1)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$2.186(5)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.005(4)$	$\mathrm{O} 2-\mathrm{C} 8$	$1.285(8)$
$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.955(4)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.243(8)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.950(4)$	$\mathrm{O} 4-\mathrm{C} 14$	$1.255(8)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.946(4)$	$\mathrm{O} 5-\mathrm{C} 14$	$1.262(8)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$169.3(2)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 3$	$123.6(6)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$169.0(2)$	$\mathrm{O} 4-\mathrm{C} 14-\mathrm{O} 5$	$124.4(6)$

Symmetry code: (i) $1-x, 2-y, 1-z$.

Table 6
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$	0.96	1.72	$2.617(5)$	154

In (I), there is a positional disorder of the O atom in the ethanol of crystallization. The O and C atoms of the disordered ethanol were refined isotropically and the occupation factors of the ethanol O7 and O8 positions were assumed to be 30 and 70%, respectively, based on the displacement parameters. There are hydrogen bonds involving these O atoms: $\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 8(x-1, y, z-1), \mathrm{O} 6 \cdots \mathrm{O} 8=2.718(5) \AA$; $\mathrm{O} 3-\mathrm{H} \cdots \mathrm{O} 7(1-x, \quad-y, \quad 1-z), \quad \mathrm{O} 3 \cdots \mathrm{O} 7=3.040(10) \AA$; O3$\mathrm{H} \cdots \mathrm{O} 8(x-1, y, z), \mathrm{O} 3 \cdots \mathrm{O} 8=2.884(5) \AA$. Non-H atoms of the ligating ethanol in (I) were also refined isotropically to avoid unusual displacement parameters.
 abnormally large for the methyl-C atoms of the tert-butyl groups, which may be due to vibrational and rotational disorder. The positions of all the H atoms were calculated geometrically except for those of the ethanol of crystallization in (I) and a riding model was used in their refinement $\left[\mathrm{C}-\mathrm{H} 0.96 \AA, U_{\text {iso }}(\mathrm{H})=0.3 \AA^{2}\right.$ for (I), $0.2 \AA^{2}$ for (I)-(IV)].

The magnetic susceptibilities over the temperature range 80-300 K were determined by the Faraday method at Saga University. The procedure for determining the $-2 J$ value from cryomagnetic data based on the Bleaney-Bowers equation is described elsewhere (Harada et al., 1997).

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: local programs; program(s) used to solve structure: CRYSTAN$G M$ (Edwards et al., 1996); program(s) used to refine structure: CRYSTAN-GM; molecular graphics: CRYSTAN-GM; software used to prepare material for publication: CRYSTAN-GM.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1094). Services for accessing these data are described at the back of the journal.

References

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 10351038.

Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1996). CRYSTAN-GM. Program for the Solution and Refinement of Crystal Structures. Version 6.3. MacScience Co. Ltd, Yokohama, Japan.
Harada, A., Tsuchimoto, M., Ohba, S., Iwasawa, K. \& Tokii, T. (1997). Acta Cryst. B53, 654-661.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nakagawa, H., Kani, Y., Tsuchimoto, M., Ohba, S., Matsushima, H. \& Tokii, T. (2000). Acta Cryst. C56, 12-16.

Steward, O. W., McAfee, R. C., Chang, S. C., Piskor, S. R., Schreiber, W. J., Jury, C. F., Taylor, C. E., Pletcher, J. F. \& Chen, C. S. (1986). Inorg. Chem. 25, 771777.

Yamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. \& Steward, O. W. (1991). Acta Cryst. B47, 344-355.

